Условный экстремум. Метод множителей Лагранжа.

Для начала рассмотрим случай функции двух переменных. Условным экстремумом функции $z=f(x,y)$ в точке $M_0(x_0;y_0)$ называется экстремум этой функции, достигнутый при условии, что переменные $x$ и $y$ в окрестности данной точки удовлетворяют уравнению связи $\varphi (x,y)=0$.

Название «условный» экстремум связано с тем, что на переменные наложено дополнительное условие $\varphi(x,y)=0$. Если из уравнения связи можно выразить одну переменную через другую, то задача определения условного экстремума сводится к задаче на обычный экстремум функции одной переменной. Например, если из уравнения связи следует $y=\psi(x)$, то подставив $y=\psi(x)$ в $z=f(x,y)$, получим функцию одной переменной $z=f\left(x,\psi(x)\right)$. В общем случае, однако, такой метод малопригоден, поэтому требуется введение нового алгоритма.

Метод множителей Лагранжа для функций двух переменных.

Метод множителей Лагранжа состоит в том, что для отыскания условного экстремума составляют функцию Лагранжа: $F(x,y)=f(x,y)+\lambda\varphi(x,y)$ (параметр $\lambda$ называют множителем Лагранжа). Необходимые условия экстремума задаются системой уравнений, из которой определяются стационарные точки:

$$ \left \{ \begin{aligned} & \frac{\partial F}{\partial x}=0;\\ & \frac{\partial F}{\partial y}=0;\\ & \varphi (x,y)=0. \end{aligned} \right. $$

Достаточным условием, из которого можно выяснить характер экстремума, служит знак $d^2 F=F_{xx}^{''}dx^2+2F_{xy}^{''}dxdy+F_{yy}^{''}dy^2$. Если в стационарной точке $d^2F > 0$, то функция $z=f(x,y)$ имеет в данной точке условный минимум, если же $d^2F < 0$, то условный максимум.

Примечание (желательное для более полного понимания текста): показать\скрыть

Есть и другой способ для определения характера экстремума. Из уравнения связи получаем: $\varphi_{x}^{'}dx+\varphi_{y}^{'}dy=0$, $dy=-\frac{\varphi_{x}^{'}}{\varphi_{y}^{'}}dx$, поэтому в любой стационарной точке имеем:

$$ d^2 F=F_{xx}^{''}dx^2+2F_{xy}^{''}dxdy+F_{yy}^{''}dy^2=F_{xx}^{''}dx^2+2F_{xy}^{''}dx\left( -\frac{\varphi_{x}^{'}}{\varphi_{y}^{'}}dx\right)+F_{yy}^{''}\left( -\frac{\varphi_{x}^{'}}{\varphi_{y}^{'}}dx\right)^2=\\ =-\frac{dx^2}{\left(\varphi_{y}^{'} \right)^2}\cdot\left( -(\varphi_{y}^{'})^2 F_{xx}^{''}+2\varphi_{x}^{'}\varphi_{y}^{'}F_{xy}^{''}-(\varphi_{x}^{'})^2 F_{yy}^{''} \right) $$

Второй сомножитель (расположенный в скобке) можно представить в такой форме:

Определитель

Красным цветом выделены элементы определителя $\left| \begin{array} {cc} F_{xx}^{''} & F_{xy}^{''} \\ F_{xy}^{''} & F_{yy}^{''} \end{array} \right|$, который является гессианом функции Лагранжа. Если $H > 0$, то $d^2F < 0$, что указывает на условный максимум. Аналогично, при $H < 0$ имеем $d^2F > 0$, т.е. имеем условный минимум функции $z=f(x,y)$.

Примечание относительно формы записи определителя $H$:показать\скрыть

Алгоритм исследования функции двух переменных на условный экстремум

  1. Составить функцию Лагранжа $F(x,y)=f(x,y)+\lambda\varphi(x,y)$
  2. Решить систему $ \left \{ \begin{aligned} & \frac{\partial F}{\partial x}=0;\\ & \frac{\partial F}{\partial y}=0;\\ & \varphi (x,y)=0. \end{aligned} \right.$
  3. Определить характер экстремума в каждой из найденных в предыдущем пункте стационарных точек. Для этого применить любой из указанных способов:
    • Составить определитель $H$ и выяснить его знак
    • С учетом уравнения связи вычислить знак $d^2F$

Метод множителей Лагранжа для функций n переменных

Допустим, мы имеем функцию $n$ переменных $z=f(x_1,x_2,\ldots,x_n)$ и $m$ уравнений связи ($n > m$):

$$ \varphi_1(x_1,x_2,\ldots,x_n)=0; \; \varphi_2(x_1,x_2,\ldots,x_n)=0,\ldots,\varphi_m(x_1,x_2,\ldots,x_n)=0. $$

Обозначив множители Лагранжа как $\lambda_1,\lambda_2,\ldots,\lambda_m$, составим функцию Лагранжа:

$$ F(x_1,x_2,\ldots,x_n,\lambda_1,\lambda_2,\ldots,\lambda_m)=f+\lambda_1\varphi_1+\lambda_2\varphi_2+\ldots+\lambda_m\varphi_m $$

Необходимые условия наличия условного экстремума задаются системой уравнений, из которой находятся координаты стационарных точек и значения множителей Лагранжа:

$$ \left \{ \begin{aligned} & \frac{\partial F}{\partial x_i}=0; (i=\overline{1,n})\\ & \varphi_j=0; (j=\overline{1,m}) \end{aligned} \right. $$

Выяснить, условный минимум или условный максимум имеет функция в найденной точке, можно, как и ранее, посредством знака $d^2F$. Если в найденной точке $d^2F > 0$, то функция имеет условный минимум, если же $d^2F < 0$, – то условный максимум. Можно пойти иным путем, рассмотрев следующую матрицу:

Матрица

Определитель матрицы $\left| \begin{array} {ccccc} \frac{\partial^2F}{\partial x_{1}^{2}} & \frac{\partial^2F}{\partial x_{1}\partial x_{2}} & \frac{\partial^2F}{\partial x_{1}\partial x_{3}} &\ldots & \frac{\partial^2F}{\partial x_{1}\partial x_{n}}\\ \frac{\partial^2F}{\partial x_{2}\partial x_1} & \frac{\partial^2F}{\partial x_{2}^{2}} & \frac{\partial^2F}{\partial x_{2}\partial x_{3}} &\ldots & \frac{\partial^2F}{\partial x_{2}\partial x_{n}}\\ \frac{\partial^2F}{\partial x_{3} \partial x_{1}} & \frac{\partial^2F}{\partial x_{3}\partial x_{2}} & \frac{\partial^2F}{\partial x_{3}^{2}} &\ldots & \frac{\partial^2F}{\partial x_{3}\partial x_{n}}\\ \ldots & \ldots & \ldots &\ldots & \ldots\\ \frac{\partial^2F}{\partial x_{n}\partial x_{1}} & \frac{\partial^2F}{\partial x_{n}\partial x_{2}} & \frac{\partial^2F}{\partial x_{n}\partial x_{3}} &\ldots & \frac{\partial^2F}{\partial x_{n}^{2}}\\ \end{array} \right|$, выделенной в матрице $L$ красным цветом, есть гессиан функции Лагранжа. Найдя в каждой стационарной точке значение определителя $H=\Delta L$, используем следующее правило:

Пример №1

Найти условный экстремум функции $z(x,y)=x+3y$ при условии $x^2+y^2=10$.

Решение

Геометрическая интерпретация данной задачи такова: требуется найти наибольшее и наименьшее значение аппликаты плоскости $z=x+3y$ для точек ее пересечения с цилиндром $x^2+y^2=10$.

Выразить одну переменную через другую из уравнения связи и подставить ее в функцию $z(x,y)=x+3y$ несколько затруднительно, поэтому будем использовать метод Лагранжа.

Обозначив $\varphi(x,y)=x^2+y^2-10$, составим функцию Лагранжа:

$$ F(x,y)=z(x,y)+\lambda \varphi(x,y)=x+3y+\lambda(x^2+y^2-10);\\ \frac{\partial F}{\partial x}=1+2\lambda x; \frac{\partial F}{\partial y}=3+2\lambda y. $$

Запишем систему уравнений для определения стационарных точек функции Лагранжа:

$$ \left \{ \begin{aligned} & 1+2\lambda x=0;\\ & 3+2\lambda y=0;\\ & x^2+y^2-10=0. \end{aligned} \right. $$

Если предположить $\lambda=0$, то первое уравнение станет таким: $1=0$. Полученное противоречие говорит о том, что $\lambda\neq 0$. При условии $\lambda\neq 0$ из первого и второго уравнений имеем: $x=-\frac{1}{2\lambda}$, $y=-\frac{3}{2\lambda}$. Подставляя полученные значения в третье уравнение, получим:

$$ \left( -\frac{1}{2\lambda} \right)^2+\left( -\frac{3}{2\lambda} \right)^2-10=0;\\ \frac{1}{4\lambda^2}+\frac{9}{4\lambda^2}=10; \lambda^2=\frac{1}{4}; \left[ \begin{aligned} & \lambda_1=-\frac{1}{2};\\ & \lambda_2=-\frac{1}{2}. \end{aligned} \right.\\ \begin{aligned} & \lambda_1=-\frac{1}{2}; \; x_1=-\frac{1}{2\lambda_1}=1; \; y_1=-\frac{3}{2\lambda_1}=3;\\ & \lambda_2=\frac{1}{2}; \; x_2=-\frac{1}{2\lambda_2}=-1; \; y_2=-\frac{3}{2\lambda_2}=-3.\end{aligned} $$

Итак, система имеет два решения: $x_1=1;\; y_1=3;\; \lambda_1=-\frac{1}{2}$ и $x_2=-1;\; y_2=-3;\; \lambda_2=\frac{1}{2}$. Выясним характер экстремума в каждой стационарной точке: $M_1(1;3)$ и $M_2(-1;-3)$. Для этого вычислим определитель $H$ в каждой из точек.

$$ \varphi_{x}^{'}=2x;\; \varphi_{y}^{'}=2y;\; F_{xx}^{''}=2\lambda;\; F_{xy}^{''}=0;\; F_{yy}^{''}=2\lambda.\\ H=\left| \begin{array} {ccc} 0 & \varphi_{x}^{'} & \varphi_{y}^{'}\\ \varphi_{x}^{'} & F_{xx}^{''} & F_{xy}^{''} \\ \varphi_{y}^{'} & F_{xy}^{''} & F_{yy}^{''} \end{array} \right|= \left| \begin{array} {ccc} 0 & 2x & 2y\\ 2x & 2\lambda & 0 \\ 2y & 0 & 2\lambda \end{array} \right|= 8\cdot\left| \begin{array} {ccc} 0 & x & y\\ x & \lambda & 0 \\ y & 0 & \lambda \end{array} \right| $$

В точке $M_1(1;3)$ получим: $H=8\cdot\left| \begin{array} {ccc} 0 & x & y\\ x & \lambda & 0 \\ y & 0 & \lambda \end{array} \right|= 8\cdot\left| \begin{array} {ccc} 0 & 1 & 3\\ 1 & -1/2 & 0 \\ 3 & 0 & -1/2 \end{array} \right|=40 > 0$, поэтому в точке $M_1(1;3)$ функция $z(x,y)=x+3y$ имеет условный максимум, $z_{max}=z(1;3)=10$.

Аналогично, в точке $M_2(-1;-3)$ найдем: $H=8\cdot\left| \begin{array} {ccc} 0 & x & y\\ x & \lambda & 0 \\ y & 0 & \lambda \end{array} \right|= 8\cdot\left| \begin{array} {ccc} 0 & -1 & -3\\ -1 & 1/2 & 0 \\ -3 & 0 & 1/2 \end{array} \right|=-40$. Так как $H < 0$, то в точке $M_2(-1;-3)$ имеем условный минимум функции $z(x,y)=x+3y$, а именно: $z_{min}=z(-1;-3)=-10$.

Вопрос о характере экстремума в стационарных точках $M_1(1;3)$ и $M_2(-1;-3)$ можно решить и без использования определителя $H$. Найдем знак $d^2F$ в каждой стационарной точке:

$$ d^2 F=F_{xx}^{''}dx^2+2F_{xy}^{''}dxdy+F_{yy}^{''}dy^2=2\lambda \left( dx^2+dy^2\right) $$

Отмечу, что запись $dx^2$ означает именно $dx$, возведённый в вторую степень, т.е. $\left( dx \right)^2$. Отсюда имеем: $dx^2+dy^2>0$, посему при $\lambda_1=-\frac{1}{2}$ получим $d^2F < 0$. Следовательно, функция имеет в точке $M_1(1;3)$ условный максимум. Аналогично, в точке $M_2(-1;-3)$ получим условный минимум функции $z(x,y)=x+3y$. Отметим, что для определения знака $d^2F$ не пришлось учитывать связь между $dx$ и $dy$, ибо знак $d^2F$ очевиден без дополнительных преобразований. В следующем примере для определения знака $d^2F$ уже будет необходимо учесть связь между $dx$ и $dy$.

Пример №2

Найти условный экстремум функции $z(x,y)=3y^3+4x^2-xy$ при условии $x+y=0$.

Решение

Первый способ (метод множителей Лагранжа)

Обозначив $\varphi(x,y)=x+y$ составим функцию Лагранжа: $F(x,y)=z(x,y)+\lambda \varphi(x,y)=3y^3+4x^2-xy+\lambda(x+y)$.

$$ \frac{\partial F}{\partial x}=8x-y+\lambda; \; \frac{\partial F}{\partial y}=9y^2-x+\lambda.\\ \left \{ \begin{aligned} & 8x-y+\lambda=0;\\ & 9y^2-x+\lambda=0; \\ & x+y=0. \end{aligned} \right. $$

Решив систему, получим: $x_1=0$, $y_1=0$, $\lambda_1=0$ и $x_2=\frac{10}{9}$, $y_2=-\frac{10}{9}$, $\lambda_2=-10$. Имеем две стационарные точки: $M_1(0;0)$ и $M_2 \left(\frac{10}{9};-\frac{10}{9} \right)$. Выясним характер экстремума в каждой стационарной точке с использованием определителя $H$.

$$ H=\left| \begin{array} {ccc} 0 & \varphi_{x}^{'} & \varphi_{y}^{'}\\ \varphi_{x}^{'} & F_{xx}^{''} & F_{xy}^{''} \\ \varphi_{y}^{'} & F_{xy}^{''} & F_{yy}^{''} \end{array} \right|= \left| \begin{array} {ccc} 0 & 1 & 1\\ 1 & 8 & -1 \\ 1 & -1 & 18y \end{array} \right|=-10-18y $$

В точке $M_1(0;0)$ $H=-10-18\cdot 0=-10 < 0$, поэтому $M_1(0;0)$ есть точка условного минимума функции $z(x,y)=3y^3+4x^2-xy$, $z_{min}=0$. В точке $M_2\left(\frac{10}{9};-\frac{10}{9}\right)$ $H=10 > 0$, посему в данной точке функция имеет условный максимум, $z_{max}=\frac{500}{243}$.

Исследуем характер экстремума в каждой из точек иным методом, основываясь на знаке $d^2F$:

$$ d^2 F=F_{xx}^{''}dx^2+2F_{xy}^{''}dxdy+F_{yy}^{''}dy^2=8dx^2-2dxdy+18ydy^2 $$

Из уравнения связи $x+y=0$ имеем: $d(x+y)=0$, $dx+dy=0$, $dy=-dx$.

$$ d^2 F=8dx^2-2dxdy+18ydy^2=8dx^2-2dx(-dx)+18y(-dx)^2=(10+18y)dx^2 $$

Так как $ d^2F \Bigr|_{M_1}=10 dx^2 > 0$, то $M_1(0;0)$ является точкой условного минимума функции $z(x,y)=3y^3+4x^2-xy$. Аналогично, $ d^2F \Bigr|_{M_2}=-10 dx^2 < 0$, т.е. $M_2\left(\frac{10}{9}; -\frac{10}{9} \right)$ – точка условного максимума.

Второй способ

Из уравнения связи $x+y=0$ получим: $y=-x$. Подставив $y=-x$ в функцию $z(x,y)=3y^3+4x^2-xy$, имеем:

$$ z=3\cdot(-x)^3+4x^2-x\cdot(-x)=-3x^3+5x^2. $$

Таким образом задачу о нахождении условного экстремума функции двух переменных мы свели к задаче определения экстремума функции одной переменной.

$$ z_{x}^{'}=-9x^2+10x;\\ -9x^2+10x=0; \; x\cdot(-9x+10)=0;\\ x_1=0; \; y_1=-x_1=0;\\ x_2=\frac{10}{9}; \; y_2=-x_2=-\frac{10}{9}. $$

Получили точки $M_1(0;0)$ и $M_2\left(\frac{10}{9}; -\frac{10}{9} \right)$. Дальнейшее исследование известно из курса дифференциального исчисления функций одной переменой. Исследуя знак $z_{xx}^{''}$ в каждой стационарной точке или проверяя смену знака $z_{x}^{'}$ в найденных точках, получим те же выводы, что и при решении первым способом.

Рассмотрим еще один пример, в котором характер экстремума выясним посредством определения знака $d^2F$.

Пример №3

Найти наибольшее и наименьшее значения функции $z=5xy-4$, если переменные $x$ и $y$ положительны и удовлетворяют уравнению связи $\frac{x^2}{8}+\frac{y^2}{2}-1=0$.

Решение

Составим функцию Лагранжа: $F=5xy-4+\lambda \left( \frac{x^2}{8}+\frac{y^2}{2}-1 \right)$. Найдем стационарные точки функции Лагранжа:

$$ F_{x}^{'}=5y+\frac{\lambda x}{4}; \; F_{y}^{'}=5x+\lambda y.\\ \left \{ \begin{aligned} & 5y+\frac{\lambda x}{4}=0;\\ & 5x+\lambda y=0;\\ & \frac{x^2}{8}+\frac{y^2}{2}-1=0;\\ & x > 0; \; y > 0. \end{aligned} \right. $$

Все дальнейшие преобразования осуществляются с учетом $x > 0; \; y > 0$ (это оговорено в условии задачи). Из второго уравнения выразим $\lambda=-\frac{5x}{y}$ и подставим найденное значение в первое уравнение: $5y-\frac{5x}{y}\cdot \frac{x}{4}=0$, $4y^2-x^2=0$, $x=2y$. Подставляя $x=2y$ в третье уравнение, получим: $\frac{4y^2}{8}+\frac{y^2}{2}-1=0$, $y^2=1$, $y=1$.

Так как $y=1$, то $x=2$, $\lambda=-10$. Характер экстремума в точке $(2;1)$ определим, исходя из знака $d^2F$.

$$ F_{xx}^{''}=\frac{\lambda}{4}; \; F_{xy}^{''}=5; \; F_{yy}^{''}=\lambda. $$

Так как $\frac{x^2}{8}+\frac{y^2}{2}-1=0$, то:

$$ d\left( \frac{x^2}{8}+\frac{y^2}{2}-1\right)=0; \; d\left( \frac{x^2}{8} \right)+d\left( \frac{y^2}{2} \right)=0; \; \frac{x}{4}dx+ydy=0; \; dy=-\frac{xdx}{4y}. $$

В принципе, здесь можно сразу подставить координаты стационарной точки $x=2$, $y=1$ и параметра $\lambda=-10$, получив при этом:

$$ F_{xx}^{''}=\frac{-5}{2}; \; F_{xy}^{''}=-10; \; dy=-\frac{dx}{2}.\\ d^2 F=F_{xx}^{''}dx^2+2F_{xy}^{''}dxdy+F_{yy}^{''}dy^2=-\frac{5}{2}dx^2+10dx\cdot \left(-\frac{dx}{2} \right)-10\cdot \left(-\frac{dx}{2} \right)^2=\\ =-\frac{5}{2}dx^2-5dx^2-\frac{5}{2}dx^2=-10dx^2. $$

Однако в других задачах на условный экстремум стационарных точек может быть несколько. В таких случаях лучше $d^2F$ представить в общем виде, а потом подставлять в полученное выражение координаты каждой из найденных стационарных точек:

$$ d^2 F=F_{xx}^{''}dx^2+2F_{xy}^{''}dxdy+F_{yy}^{''}dy^2=\frac{\lambda}{4}dx^2+10\cdot dx\cdot \frac{-xdx}{4y} +\lambda\cdot \left(-\frac{xdx}{4y} \right)^2=\\ =\frac{\lambda}{4}dx^2-\frac{5x}{2y}dx^2+\lambda \cdot \frac{x^2dx^2}{16y^2}=\left( \frac{\lambda}{4}-\frac{5x}{2y}+\frac{\lambda \cdot x^2}{16y^2} \right)\cdot dx^2 $$

Подставляя $x=2$, $y=1$, $\lambda=-10$, получим:

$$ d^2 F=\left( \frac{-10}{4}-\frac{10}{2}-\frac{10 \cdot 4}{16} \right)\cdot dx^2=-10dx^2. $$

Так как $d^2F=-10\cdot dx^2 < 0$, то точка $(2;1)$ есть точкой условного максимума функции $z=5xy-4$, причём $z_{max}=10-4=6$.

Вернуться к списку тем Задать вопрос на форуме