Реклама
Первая часть Вторая часть

Возведение матрицы в степень. Вычисление результатов выражений с матрицами.

Здесь мы продолжим начатую в первой части тему операций над матрицами и разберём пару примеров, в которых потребуется применять несколько операций сразу.

Возведение матрицы в степень.

Пусть k – целое неотрицательное число. Для любой квадратной матрицы $A_{n\times n}$ имеем: $$ A^k=\underbrace{A\cdot A\cdot \ldots \cdot A}_{k \; раз} $$

При этом полагаем, что $A^0=E$, где $E$ – единичная матрица соответствующего порядка.

Пример №4

Задана матрица $ A=\left(\begin{array} {cc} 1 & 2 \\ -1 & -3 \end{array} \right)$. Найти матрицы $A^2$ и $A^6$.

Решение

Согласно определению $A^2=A\cdot A$, т.е. для нахождения $A^2$ нам просто нужно умножить матрицу $A$ саму на себя. Операция умножения матриц рассматривалась в первой части темы, поэтому тут просто запишем процесс решения без подробных пояснений:

$$ A^2=A\cdot A=\left(\begin{array} {cc} 1 & 2 \\ -1 & -3 \end{array} \right)\cdot \left(\begin{array} {cc} 1 & 2 \\ -1 & -3 \end{array} \right)= \left(\begin{array} {cc} 1\cdot 1+2\cdot (-1) & 1\cdot 2+2\cdot (-3) \\ -1\cdot 1+(-3)\cdot (-1) & -1\cdot 2+(-3)\cdot (-3) \end{array} \right)= \left(\begin{array} {cc} -1 & -4 \\ 2 & 7 \end{array} \right). $$

Чтобы найти матрицу $A^6$ у нас есть два варианта. Вариант первый: банально продолжить домножать $A^2$ на матрицу $A$:

$$ A^6=A^2\cdot A\cdot A\cdot A\cdot A. $$

Однако можно пойти несколько более простым путём, используя свойство ассоциативности умножения матриц. Расставим скобки в выражении для $A^6$:

$$ A^6=A^2\cdot A\cdot A\cdot A\cdot A=A^2\cdot (A\cdot A)\cdot (A\cdot A)=A^2\cdot A^2\cdot A^2. $$

Если при решении первым способом потребовалось бы четыре операции умножения, то для второго способа – лишь две. Поэтому пойдём вторым путём:

$$ A^6=A^2\cdot A^2\cdot A^2=\left(\begin{array} {cc} -1 & -4 \\ 2 & 7 \end{array} \right)\cdot \left(\begin{array} {cc} -1 & -4 \\ 2 & 7 \end{array} \right)\cdot \left(\begin{array} {cc} -1 & -4 \\ 2 & 7 \end{array} \right)=\\= \left(\begin{array} {cc} -1\cdot (-1)+(-4)\cdot 2 & -1\cdot (-4)+(-4)\cdot 7 \\ 2\cdot (-1)+7\cdot 2 & 2\cdot (-4)+7\cdot 7 \end{array} \right)\cdot \left(\begin{array} {cc} -1 & -4 \\ 2 & 7 \end{array} \right)= \left(\begin{array} {cc} -7 & -24 \\ 12 & 41 \end{array} \right)\cdot \left(\begin{array} {cc} -1 & -4 \\ 2 & 7 \end{array} \right)=\\= \left(\begin{array} {cc} -7\cdot(-1)+(-24)\cdot 2 & -7\cdot (-4)+(-24)\cdot 7 \\ 12\cdot (-1)+41\cdot 2 & 12\cdot (-4)+41\cdot 7 \end{array} \right)= \left(\begin{array} {cc} -41 & -140 \\ 70 & 239 \end{array} \right). $$

Ответ: $A^2=\left(\begin{array} {cc} -1 & -4 \\ 2 & 7 \end{array} \right)$, $A^6=\left(\begin{array} {cc} -41 & -140 \\ 70 & 239 \end{array} \right)$.

Пример №5

Заданы матрицы $ A=\left(\begin{array} {cccc} 1 & 0 & -1 & 2 \\ 3 & -2 & 5 & 0 \\ -1 & 4 & -3 & 6 \end{array} \right)$, $ B=\left(\begin{array} {ccc} -9 & 1 & 0 \\ 2 & -1 & 4 \\ 0 & -2 & 3 \\ 1 & 5 & 0 \end{array} \right)$, $ C=\left(\begin{array} {ccc} -5 & -20 & 13 \\ 10 & 12 & 9 \\ 3 & -15 & 8 \end{array} \right)$. Найти матрицу $D=2AB-3C^T+7E$.

Решение

Вычисление матрицы $D$ начнем с нахождения результата произведения $AB$. Матрицы $A$ и $B$ можно перемножать, так как количество столбцов матрицы $A$ равно количеству строк матрицы $B$. Обозначим $F=AB$. При этом матрица $F$ будет иметь три столбца и три строки, т.е. будет квадратной (если этот вывод кажется неочевидным, посмотрите описание умножения матриц в первой части этой темы). Найдем матрицу $F$, вычислив все её элементы:

$$ F=A\cdot B=\left(\begin{array} {cccc} 1 & 0 & -1 & 2 \\ 3 & -2 & 5 & 0 \\ -1 & 4 & -3 & 6 \end{array} \right)\cdot \left(\begin{array} {ccc} -9 & 1 & 0 \\ 2 & -1 & 4 \\ 0 & -2 & 3 \\ 1 & 5 & 0 \end{array} \right)\\ \begin{aligned} & f_{11}=1\cdot (-9)+0\cdot 2+(-1)\cdot 0+2\cdot 1=-7; \\ & f_{12}=1\cdot 1+0\cdot (-1)+(-1)\cdot (-2)+2\cdot 5=13; \\ & f_{13}=1\cdot 0+0\cdot 4+(-1)\cdot 3+2\cdot 0=-3;\\ \\ & f_{21}=3\cdot (-9)+(-2)\cdot 2+5\cdot 0+0\cdot 1=-31;\\ & f_{22}=3\cdot 1+(-2)\cdot (-1)+5\cdot (-2)+0\cdot 5=-5;\\ & f_{23}=3\cdot 0+(-2)\cdot 4+5\cdot 3+0\cdot 0=7;\\ \\ & f_{31}=-1\cdot (-9)+4\cdot 2+(-3)\cdot 0+6\cdot 1=23; \\ & f_{32}=-1\cdot 1+4\cdot (-1)+(-3)\cdot (-2)+6\cdot 5=31;\\ & f_{33}=-1\cdot 0+4\cdot 4+(-3)\cdot 3+6\cdot 0=7. \end{aligned} $$

Итак, $F=\left(\begin{array} {ccc} -7 & 13 & -3 \\ -31 & -5 & 7 \\ 23 & 31 & 7 \end{array} \right)$. Пойдём далее. Матрица $C^T$ – транспонированная матрица для матрицы $C$, т.е. $ C^T=\left(\begin{array} {ccc} -5 & 10 & 3 \\ -20 & 12 & -15 \\ 13 & 9 & 8 \end{array} \right) $. Что же касаемо матрицы $E$, то это есть единичная матрица. В данном случае порядок этой матрицы равен трём, т.е. $E=\left(\begin{array} {ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$.

В принципе, мы и дальше можем идти пошагово, но оставшееся выражение лучше рассматривать целиком, не отвлекаясь на вспомогательные действия. По сути, нам остались лишь операции умножения матриц на число, а также операции сложения и вычитания.

$$ D=2AB-3C^T+7E=2\cdot \left(\begin{array} {ccc} -7 & 13 & -3 \\ -31 & -5 & 7 \\ 23 & 31 & 7 \end{array} \right)-3\cdot \left(\begin{array} {ccc} -5 & 10 & 3 \\ -20 & 12 & -15 \\ 13 & 9 & 8 \end{array} \right)+7\cdot \left(\begin{array} {ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) $$

Умножим матрицы в правой части равенства на соответствующие числа (т.е. на 2, 3 и 7):

$$ 2\cdot \left(\begin{array} {ccc} -7 & 13 & -3 \\ -31 & -5 & 7 \\ 23 & 31 & 7 \end{array} \right)-3\cdot \left(\begin{array} {ccc} -5 & 10 & 3 \\ -20 & 12 & -15 \\ 13 & 9 & 8 \end{array} \right)+7\cdot \left(\begin{array} {ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)=\\= \left(\begin{array} {ccc} -14 & 26 & -6 \\ -62 & -10 & 14 \\ 46 & 62 & 14 \end{array} \right)-\left(\begin{array} {ccc} -15 & 13 & 9 \\ -60 & 36 & -45 \\ 39 & 27 & 24 \end{array} \right)+\left(\begin{array} {ccc} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{array} \right) $$

Выполним последние действия: вычитание и сложение:

$$ \left(\begin{array} {ccc} -14 & 26 & -6 \\ -62 & -10 & 14 \\ 46 & 62 & 14 \end{array} \right)-\left(\begin{array} {ccc} -15 & 30 & 9 \\ -60 & 36 & -45 \\ 39 & 27 & 24 \end{array} \right)+\left(\begin{array} {ccc} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{array} \right)=\\ =\left(\begin{array} {ccc} -14-(-15)+7 & 26-30+0 & -6-9+0 \\ -62-(-60)+0 & -10-36+7 & 14-(-45)+0 \\ 46-39+0 & 62-27+0 & 14-24+7 \end{array} \right)= \left(\begin{array} {ccc} 8 & -4 & -15 \\ -2 & -39 & 59 \\ 7 & 35 & -3 \end{array} \right). $$

Задача решена, $D=\left(\begin{array} {ccc} 8 & -4 & -15 \\ -2 & -39 & 59 \\ 7 & 35 & -3 \end{array} \right)$.

Ответ: $D=\left(\begin{array} {ccc} 8 & -4 & -15 \\ -2 & -39 & 59 \\ 7 & 35 & -3 \end{array} \right)$.

Пример №6

Пусть $f(x)=2x^2+3x-9$ и матрица $ A=\left(\begin{array} {cc} -3 & 1 \\ 5 & 0 \end{array} \right) $. Найти значение $f(A)$.

Решение

Если $f(x)=2x^2+3x-9$, то под $f(A)$ понимают матрицу:

$$ f(A)=2A^2+3A-9E. $$

Именно так определяется многочлен от матрицы. Итак, нам нужно подставить матрицу $A$ в выражение для $f(A)$ и получить результат. Так как все действия были подробно разобраны ранее, то тут я просто приведу решение. Если процесс выполнения операции $A^2=A\cdot A$ для вас неясен, то советую глянуть описание умножения матриц в первой части этой темы.

$$ f(A)=2A^2+3A-9E=2A\cdot A+3A-9E=2 \left(\begin{array} {cc} -3 & 1 \\ 5 & 0 \end{array} \right)\cdot \left(\begin{array} {cc} -3 & 1 \\ 5 & 0 \end{array} \right)+3 \left(\begin{array} {cc} -3 & 1 \\ 5 & 0 \end{array} \right)-9\left(\begin{array} {cc} 1 & 0 \\ 0 & 1 \end{array} \right)=\\ =2 \left(\begin{array} {cc} (-3)\cdot(-3)+1\cdot 5 & (-3)\cdot 1+1\cdot 0 \\ 5\cdot(-3)+0\cdot 5 & 5\cdot 1+0\cdot 0 \end{array} \right)+3 \left(\begin{array} {cc} -3 & 1 \\ 5 & 0 \end{array} \right)-9\left(\begin{array} {cc} 1 & 0 \\ 0 & 1 \end{array} \right)=\\ =2 \left(\begin{array} {cc} 14 & -3 \\ -15 & 5 \end{array} \right)+3 \left(\begin{array} {cc} -3 & 1 \\ 5 & 0 \end{array} \right)-9\left(\begin{array} {cc} 1 & 0 \\ 0 & 1 \end{array} \right) =\left(\begin{array} {cc} 28 & -6 \\ -30 & 10 \end{array} \right)+\left(\begin{array} {cc} -9 & 3 \\ 15 & 0 \end{array} \right)-\left(\begin{array} {cc} 9 & 0 \\ 0 & 9 \end{array} \right)=\left(\begin{array} {cc} 10 & -3 \\ -15 & 1 \end{array} \right). $$

Ответ: $f(A)=\left(\begin{array} {cc} 10 & -3 \\ -15 & 1 \end{array} \right)$.

Вернуться к списку тем Задать вопрос на форуме Мой аккаунт ВКонтакте Записаться на курс онлайн-занятий