Реклама

Понятие множества. Способы задания множеств.

Данная тема содержит немало терминологии, поэтому я добавлю содержание темы, которое позволит легче ориентироваться в материале.

  1. Обозначение множеств. Принадлежность элемента множеству. Пустое множество.
  2. Подмножество. Универсальное множество. Равенство множеств. Булеан.
  3. Способы задания множеств.

Начнём с того, что же, собственно, понимать под словом "множество". На интуитивном уровне под множеством понимают некую совокупность объектов, именуемых элементами множества. Например, можно говорить о множестве груш на столе, множестве букв в слове "множество" и так далее. Георг Кантор (немецкий математик, основатель современной теории множеств) писал, что под "множеством я понимаю вообще всё то многое, которое возможно мыслить как единое, т.е. такую совокупность определённых элементов, которая посредством одного закона может быть соединена в одно целое". Некоторое время понятие множества, введённое Кантором, полагалось довольно очевидным и не требующим дополнительных пояснений. Казалось, что появление работ Больцано, а затем и Кантора в конце 19 - начале 20 века, положит конец многим вопросам (например, окончательно разрешит апории Зенона, разрешит проблему бесконечности и т.д.) и станет началом новой математики. Гениальный немецкий математик Давид Гильберт отмечал, что "Никто не изгонит нас из рая, созданного Кантором".

Однако появление парадоксов (Рассел, Бурали-Форти) положило конец "канторовскому раю". Одна из формулировок парадокса Рассела, известная под названием "парадокс брадобрея" звучит так: в некотором селе брадобрей бреет тех и только тех жителей села, которые не бреются сами. Кто же тогда бреет самого брадобрея? Допустим, он бреет себя самостоятельно. Т.е. он принадлежит к тем жителям села, которые бреются сами, – а ведь согласно условию этих жителей брадобрей не имеет права брить. Следовательно, допущение о том, что брадобрей бреется сам, приводит к противоречию. Попробуем иначе: пусть брадобрей не бреется сам. Если он сам не бреется, то согласно условию его обязан брить брадобрей – вновь противоречие! Были предприняты попытки разрешить противоречия теории множеств, предложенной Кантором. Саму канторовскую теорию множеств математики назвали "наивной". Целью многих математических трудов стало построение такой системы аксиом, в которой подобные парадоксы были бы невозможны. Но задача оказалась не столь уж проста. На данный момент, насколько мне известно, единой аксиоматики теории множеств нет. Наиболее распространенной считается система аксиом Цермело-Френкеля (ZFC), в которой особняком стоит так называемая "аксиома выбора". Есть и вариации этой системы: например, автор B-метода Жан-Раймонд Абриал предложил типизированную теорию множеств, на основании которой создал формальный метод разработки программ.

Обозначение множеств. Принадлежность элемента множеству. Пустое множество.

Обычно множества записываются в фигурных скобках. Например, множество всех гласных букв русского алфавита будет записано так:

$$\{а, е, ё, и, о, у, ы, э, ю, я \} $$

А множество всех целых целых чисел, больших 8, но меньших 15, будет таким:

$$\{9,10,11,12,13,14 \} $$

Множество может вообще не содержать ни одного элемента. В этом случае его именуют пустым множеством и обозначают как $\varnothing$.

Чаще всего в математической литературе множества обозначаются с помощью больших букв латинского алфавита. Например:

$$A=\{0, 5, 6, -9 \},\; B=\{\Delta, +, -5, 0\}.$$

Есть и устоявшиеся обозначения определённых множеств. Например, множество натуральных чисел принято обозначать буквой $N$; множество целых чисел – буквой $Z$; множество рациональных чисел – буквой $Q$; множество всех действительных чисел – буквой $R$. Есть и иные устоявшиеся обозначения, но к ним мы станем обращаться по мере необходимости.

Множество, которое содержит конечное количество элементов, именуют конечным множеством. Если множество содержит бесконечное количество элементов, его называют бесконечным.

Например, указанное выше множество $A=\{0, 5, 6, -9 \}$ – конечное множество, ибо содержит 4 элемента (т.е. конечное число элементов). Множество натуральных чисел $N$ является бесконечным. Вообще говоря, мы не всегда можем сразу с уверенностью сказать, бесконечно некое множество или нет. Например, пусть $F$ – множество простых чисел.

Что такое простое число: показать\скрыть

Возникает вопрос: бесконечно множество $F$ или нет? Существует ли наибольшее простое число? Для ответа на этот вопрос понадобилась целая теорема, доказанная Эвклидом, о том, что множество простых чисел – бесконечно.

Под мощностью множества для конечных множеств понимают количество элементов данного множества. Мощность множества $A$ обозначается как $|A|$.

Например, так как конечное множество $A=\{0, 5, 6, -9 \}$ содержит 4 элемента, то мощность множества $A$ равна 4, т.е. $|A|=4$.

Если нам известно, что некий объект $a$ принадлежит множеству $A$, то записывают это так: $a\in A$. Например, для вышеуказанного множества $A$ можно записать, что $5\in A$, $-9\in A$. Если же объект $a$ не принадлежит множеству $A$, то обозначается это следующим образом: $a\notin A$. Например, $19\notin A$. Кстати, сказать, элементами множеств могут быть и иные множества, например:

$$ M=\{-9,1,0, \{ a, g\}, \varnothing \} $$

Элементами множества $M$ являются числа -9, 1, 0, а также множество $ \{ a,\; g\}$ и пустое множество $\varnothing$. Вообще, для упрощения восприятия множество можно представлять как портфель. Пустое множество – пустой портфель. Эта аналогия пригодится чуть далее.

Подмножество. Универсальное множество. Равенство множеств. Булеан.

Множество $A$ называют подмножеством множества $B$, если все элементы множества $A$ являются также элементами множества $B$. Обозначение: $A\subseteq B$.

Например, рассмотрим множества $K=\{ -9,5\}$ и $T=\{8,-9,0,5,p, -11\}$. Каждый элемент множества $K$ (т.е. -9 и 5) является также элементом множества $T$. Следовательно, множество $K$ есть подмножество множества $T$, т.е. $K\subseteq T$.

Так как все элементы любого множества $A$ принадлежат самому множеству $A$, то множество $A$ является подмножеством самого множества $A$. Пустое множество $\varnothing$ является подможеством любого множества. Т.е. для произвольного множества $A$ верно следующее:

$$A\subseteq A; \; \varnothing\subseteq A.$$

Введём ещё одно определение – универсальное множество.

Универсальное множество (универсум) $U$ обладает тем свойством, что все иные множества, рассматриваемые в данной задаче, являются его подмножествами.

Иными словами, универсум содержит в себе элементы всех множеств, которые рассматриваются в рамках некоей задачи. Например, рассмотрим такую задачу: проводится опрос студентов некоей академгруппы. Каждому студенту предлагается указать мобильных операторов РФ, сим-карты которых он использует. Данные этого опроса можно представить в виде множеств. Например, если студент Василий использует сим-карты от МТС и Life, то можно записать следующее:

$$ Vasilij=\{MTC, Life \} $$

Подобные множества можно составить для каждого студента. Универсумом в этой модели будет множество, в котором перечислены все операторы России. В принципе, в качестве универсума можно взять также множество, в котором перечислены все операторы СНГ, а также множество всех мобильных операторов мира. И это не будет противоречием, ибо любой оператор России входит в множество операторов как СНГ, так и всего мира. Итак, универсум определяется только в рамках некоей конкретной задачи, при этом зачастую можно рассмотреть несколько универсальных множеств.

Множества $A$ и $B$ называются равными, если они состоят из одних и тех же элементов. Иными словами, если каждый элемент множества $A$ является также элементом множества $B$, и каждый элемент множества $B$ является также элементом множества $A$, то $A=B$.

Определение равенства множеств можно записать и по-иному: если $A\subseteq B$ и $B\subseteq A$, то $A=B$.

Рассмотрим пару множеств: первое будет $\{\Delta, k \}$, а второе – $\{k, \Delta\}$. Каждый элемент первого множества (т.е. $\Delta$ и $k$) является также элементом второго множества. Каждый элемент второго множества (т.е. $k$ и $\Delta$) является также элементом второго множества. Вывод: $\{\Delta, k \}=\{k, \Delta\}$. Как видите, порядок записи элементов в множестве роли не играет.

Рассмотрим ещё пару множеств: $X=\{k, \Delta, k, k,k \}$ и $Y=\{\Delta, k \}$. Каждый элемент множества $X$ является также элементом множества $Y$; каждый элемент множества $Y$ является также элементом множества $X$. Следовательно, $\{k, \Delta, k, k, k \}=\{\Delta, k \}$. С учётом подобных равенств в теории множеств принято одинаковые элементы не повторять в записи дважды. Например, множество цифр числа 1111111555559999 будет таким: $\{1,5,9\}$. Есть, конечно, исключения: так называемые мультимножества. В записи мультимножеств элементы могут повторяться, однако в классической теории множеств повторения элементов не допускаются.

Используя понятие равенства множеств, можно классифицировать подмножества.

Если $A\subseteq B$, при этом $A\neq B$, то множество $A$ называют собственным (строгим) подмножеством множества $B$. Также говорят, что множество $A$ строго включено в множество $B$. Записывают это так: $A \subset B$.

Если же некое подмножество множества $A$ совпадает с самим множеством $A$, то это подмножество называют несобственным. Иными словами, множество $A$ является несобственным подмножеством самого множества $A$.

Например, для рассмотренных выше множеств $K=\{ -9,5\}$ и $T=\{8,-9,0,5,p, -11\}$ имеем: $K\subseteq T$, при этом $K\neq T$. Следовательно, множество $K$ является собственным подмножеством множества $T$, что записывается как $K\subset T$. Можно сказать и так: множество $K$ строго включено в множество $T$. Запись $K\subset T$ более конкретна, нежели $K\subseteq T$. Дело в том, что записывая $K\subset T$ мы гарантируем, что $K\neq T$. В то время как запись $K\subseteq T$ не исключает случая равенства $K=T$.

Примечание относительно терминологии: показать\скрыть

Множество всех подмножеств некоего множества $A$ называют булеаном или степенью множества $A$. Обозначается булеан как $P(A)$ или $2^A$.

Пусть множество $A$ содержит $n$ элементов. Булеан множества $A$ содержит $2^n$ элементов, т.е.

$$ \left| P(A) \right|=2^{n},\;\; n=|A|. $$

Рассмотрим пару примеров на использование введённых выше понятий.

Пример №1

Из предложенного списка выберите те утверждения, которые являются верными. Ответ аргументируйте.

  1. $\{-3,5, 9 \}\subseteq \{-3, 9, 8, 5, 4, 6 \} $;
  2. $\{-3,5, 9 \}\subset \{-3, 9, 8, 5, 4, 6 \} $;
  3. $\{-3,5, 9 \}\in \{-3, 9, 8, 5, 4, 6 \} $;
  4. $\varnothing \subseteq \varnothing$;
  5. $\varnothing=\{\varnothing \}$;
  6. $\varnothing \in \varnothing$;
  7. $A=\{9, -5, 8 \{7, 6 \} \};\; |A|=5$.

Решение

  1. Нам заданы два множества: $\{-3,5, 9 \}$ и $\{-3, 9, 8, 5, 4, 6 \}$. Каждый элемент первого множества является также элементом второго множества. Следовательно, первое множество есть подмножество второго, т.е. $\{-3,5, 9 \}\subseteq \{-3, 9, 8, 5, 4, 6 \}$. Утверждение первого пункта – верное.
  2. В первом пункте мы выяснили, что $\{-3,5, 9 \}\subseteq \{-3, 9, 8, 5, 4, 6 \}$. При этом данные множества не равны между собой, т.е. $\{-3,5, 9 \}\neq \{-3, 9, 8, 5, 4, 6 \}$. Значит, множество $\{-3,5, 9 \}$ является собственным (в иной терминологии строгим) подмножеством множества $\{-3, 9, 8, 5, 4, 6 \}$. Этот факт записывается как $\{-3,5, 9 \}\subset \{-3, 9, 8, 5, 4, 6 \} $. Итак, утверждение второго пункта истинно.
  3. Множество $\{-3,5, 9 \}$ не является элементом множества $\{-3, 9, 8, 5, 4, 6 \}$. Утверждение третьего пункта ложно. Для сравнения: утверждение $\{-3,5, 9 \}\in \{9, 8, 5, 4, \{-3,5,9\}, 6 \}$ истинно.
  4. Пустое множество является подможеством любого множества. Поэтому утверждение $\varnothing \subseteq \varnothing$ истинно.
  5. Утверждение ложно. Множество $\varnothing$ не содержит элементов, а множество $\{\varnothing \}$ содержит один элемент, посему равенство $\varnothing=\{\varnothing \}$ неверно. Чтобы это было нагляднее, можно обратиться к той аналогии, что я описал выше. Множество – это портфель. Пустое множество $\varnothing$ – пустой портфель. Множество $\{\varnothing \}$ – портфель, внутри которого лежит пустой портфель. Естественно, что пустой портфель и непустой портфель, внутри которого нечто есть – разные портфели :)
  6. Пустое множество не содержит элементов. Ни единого. Поэтому утверждение $\varnothing \in \varnothing$ ложно. Для сравнения: утверждение $\varnothing\in\{\varnothing \}$ истинно.
  7. Множество $A$ содержит 4 элемента, а именно: 9, -5, 8 и $\{7, 6 \}$. Поэтому мощность множества $A$ равна 4, т.е. $|A|=4$. Следовательно, утверждение о том, что $|A|=5$ – ложно.

Ответ: Утверждения в пунктах №1, №2, №4 – истинны.

Пример №2

Записать булеан множества $A=\{-5,10,9\}$.

Решение

Множество $A$ содержит 3 элемента. Иными словами: мощность множества $A$ равна 3, $|A|=3$. Следовательно, множество $A$ имеет $2^3=8$ подмножеств, т.е. булеан множества $A$ будет состоять из восьми элементов. Перечислим все подмножества множества $A$. Напомню, что пустое множество $\varnothing$ является подмножеством любого множества. Итак, подмножества таковы:

$$ \varnothing, \{-5 \}, \{ 10\}, \{ 9\}, \{-5,10 \}, \{-5, 9 \}, \{-10, 9 \}, \{-5, 10, 9 \} $$

Напомню, что подмножество $\{-5, 10, 9 \}$ является несобственным, так как совпадает с множеством $A$. Все остальные подмножества – собственные. Все записанные выше подмножества являются элементами булеана множества $A$. Итак:

$$ P(A)=\left\{\varnothing, \{-5 \}, \{ 10\}, \{ 9\}, \{-5,10 \}, \{-5, 9 \}, \{-10, 9 \}, \{-5, 10, 9 \} \right\} $$

Булеан найден, остаётся лишь записать ответ.

Ответ: $P(A)=\left\{\varnothing, \{-5 \}, \{ 10\}, \{ 9\}, \{-5,10 \}, \{-5, 9 \}, \{-10, 9 \}, \{-5, 10, 9 \} \right\}$.

Способы задания множеств.

Первый способ – это простое перечисление элементов множества. Естественно, такой способ подходит лишь для конечных множеств. Например, с помощью данного способа множество первых трёх натуральных чисел будет записано так:

$$ \{1,2,3\} $$

Часто в литературе можно встретить обозначения такого характера: $T=\{0,2,4,6,8, 10, \ldots \}$. Здесь множество задаётся не перечислением элементов, как кажется на первый взгляд. Перечислить все чётные неотрицательные числа, которые и составляют множество $T$, невозможно, ибо этих чисел бесконечно много. Запись вида $T=\{0,2,4,6,8, 10, \ldots \}$ допускается только тогда, когда не вызывает разночтений.

Второй способ – задать множество с помощью так называемого характеристического условия (характеристического предиката) $P(x)$. В этом случае множество записывается в таком виде:

$$\{x| P(x)\}$$

Запись $\{x| P(x)\}$ читается так: "множество всех элементов $x$, для которых высказывание $P(x)$ истинно". Что именно значит словосочетание "характеристическое условие" проще пояснить на примере. Рассмотрим такое высказывание:

$$P(x)="x\; – \;натуральное\; число,\; последняя\; цифра\; которого \;равна\; 7"$$

Подставим в это высказывание вместо $x$ число 27. Мы получим:

$$P(27)="27\; – \;натуральное\; число,\; последняя\; цифра\; которого \;равна\; 7"$$

Это истинное высказывание, так как 27 действительно является натуральным числом, последняя цифра которого равна 7. Подставим в это высказывание число $\frac{2}{5}$:

$$P\left(\frac{2}{5}\right)="\frac{2}{5}\; – \;натуральное\; число,\; последняя\; цифра\; которого \;равна\; 7"$$

Это высказывание ложно, так как $\frac{2}{5}$ не является натуральным числом. Итак, для некоторых объектов $x$ высказывание $P(x)$ может быть ложно, для некоторых – истинно (а для некоторых вообще не определено). Нас будут интересовать лишь те объекты, для которых высказывание $P(x)$ будет истинно. Именно эти объекты и образуют множество, заданное с помощью характеристического условия $P(x)$ (см. пример №3).

Третий способ – задать множество с помощью так называемой порождающей процедуры. Порождающая процедура описывает, как получить элементы множества из уже известных элементов или неких иных объектов (см. пример №4).

Пример №3

Записать множество $A=\{x| x\in Z \wedge x^2 < 10\}$ перечислением элементов.

Решение

Множество $A$ задано с помощью характеристического условия. Характеристическое условие в данном случае выражено записью "$x\in Z \wedge x^2 < 10$" (знак "$\wedge$" означает "и"). Расшифровывается эта запись так: "$x$ – целое число, и $x^2 < 10$". Иными словами, в множество $A$ должны входить лишь целые числа, квадрат которых меньше 10. Таких чисел всего 7, т.е.

$$ A=\{0,-1,1,-2,2,-3,3\} $$

Множество $A$ теперь задано с помощью перечисления элементов.

Ответ: $A=\{0,-1,1,-2,2,-3,3\}$.

Пример №4

Описать элементы множества $M$, которое задано такой порождающей процедурой:

  1. $3\in M$;
  2. Если элемент $x\in M$, то $3x\in M$.
  3. Множество $M$ – является подмножеством любого множества $A$, удовлетворяющего условиям №1 и №2.

Решение

Давайте пока оставим в покое условие №3 и посмотрим, какие элементы входят в множество $M$. Число 3 туда входит согласно первому пункту. Так как $3\in M$, то согласно пункту №2 имеем: $3\cdot 3\in M$, т.е. $9\in M$. Так как $9\in M$, то согласно пункту №2 получим: $3\cdot 9\in M$, т.е. $27\in M$. Так как $27\in M$, то по тому же пункту №2 имеем: $81\in M$. Короче говоря, построенное множество 3, 9, 27, 81 и так далее – это натуральные степени числа 3.

$$3^1=1; \; 3^2=9; \; 3^3=27; \; 3^4=81;\; \ldots$$

Итак, кажется, что искомое множество задано. И выглядит оно так: $\{3,9,27,81,\ldots \}$. Однако действительно ли условия №1 и №2 определяют только это множество?

Рассмотрим множество всех натуральных чисел, т.е. $N$. Число 3 – натуральное, посему $3\in N$. Вывод: множество $N$ удовлетворяет пункту №1. Далее, для любого натурального числа $x$ множество $N$ содержит также и число $3x$. Например, 5 и 15, 7 и 21, 13 и 39 и так далее. Значит, множество $N$ удовлетворяет условию №2. И, кстати сказать, не только множество $N$ удовлетворяет условиям №1 и №2. Например, множество всех нечётных натуральных чисел $N_1=\{1,3,5,7,9,11, \ldots\}$ тоже подходит под условия пунктов №1 и №2. Как же указать, что нам нужно именно множество $\{3,9,27,81,\ldots \}$?

Вот тут на помощь приходит пункт №3. Говоря огрублённо, он означает, что множество $M$ – наименьшее из всех возможных множеств. Так как множества $N$ и $\{3,9,27,81,\ldots \}$ удовлетворяют пунктам №1 и №2, но $N\nsubseteq \{3,9,27,81,\ldots \}$, то множество $N$ не удовлетворяет третьему пункту. Аналогично, так как $N_1\nsubseteq \{3,9,27,81,\ldots \}$, то множество $N_1$ также не удовлетворяет пункту №3. Можно показать (если это необходимо, отпишите мне на почту, я распишу подробнее), что всем трём пунктам удовлетворяет лишь множество $\{3,9,27,81,\ldots \}$, т.е.

$$M=\{3,9,27,81,\ldots \}.$$

Обычно при задании множества с помощью таких правил (которые часто называют рекурсивными или индуктивными) третий пункт подразумевается, но не оговаривается явно. Но нужно иметь его в виду.

Ответ: $M=\{3,9,27,81,\ldots \}$.

Вернуться к списку тем Задать вопрос на форуме Мой аккаунт ВКонтакте Записаться на курс онлайн-занятий