Найти объем отсеченной части цилиндра

Ответить

Смайлики
:) :D :yes: ;) :( :o :shock: :? 8-) :lol: :x :P :oops: :cry: :evil: :twisted: :roll: :!: :?: :idea: :arrow: :| :mrgreen: :geek: :ugeek:
Ещё смайлики…

BBCode ВКЛЮЧЁН
[img] ВКЛЮЧЁН
[flash] ОТКЛЮЧЕН
[url] ВКЛЮЧЁН
Смайлики ВКЛЮЧЕНЫ

Обзор темы
   

Развернуть Обзор темы: Найти объем отсеченной части цилиндра

Re: Найти объем отсеченной части цилиндра

Алексей » 14 мар 2016, 05:27

Добрый день! Здесь работает формула вида \(V=\int\limits_{\alpha}^{\beta}S(u)du\). Проще всего оси координат расположить так, как показано на рисунке: ось Ox направить по диаметру, а ось Oy провести через центр окружности основания перпендикулярно оси Ox. Тогда тело можно разбить на два одинаковых объема (слева и справа от оси Oy). Т.е. можно найти \(\frac{1}{2}V\), расположенную справа от оси Oy.

Отправка.png
Отправка.png (14.14 КБ) 3692 просмотра

В треугольнике \(\Delta{AMN}\) получим:

\(S_{\Delta{AMN}}=\frac{1}{2}AM\cdot{MN}=\frac{1}{2}\cdot{y}\cdot{y\tg\alpha}=\frac{y^2\tg\alpha}{2}.\)

Так как для половины объёма \(0 \leqslant y \leqslant {R}\), то остаётся вычислить определенный интеграл от функции \(S(y)=\frac{y^2\tg\alpha}{2}\) в пределах от 0 до \(R\). Разумеется, полученный результат нужно будет умножить на два.

Найти объем отсеченной части цилиндра

Bani » 13 мар 2016, 21:28

Доброго времени суток,

не могу сообразить как решить следующую задачу: цилиндр радиуса R пересечен плоскостью, проходящей через диаметр основания под углом \( \alpha\) к плоскости основания. Найти объем отсеченной части.
Буду признателен за описание шагов решения.

Вернуться к началу