Исследование функции

Область определения, производные, исследование и построение графиков, определение наибольшего и наименьшего значений на отрезке, задачи на наибольшее и наименьшее значения. Уравнения касательной и нормали.
Аватара пользователя
Снежана
Сообщения: 154
Зарегистрирован: 01 апр 2014, 22:10
Откуда: г.Сыктывкар

Re: Исследование функции

Сообщение Снежана »

-4 - точка локального минимума, 0 - точка максимума :)

Аватара пользователя
Снежана
Сообщения: 154
Зарегистрирован: 01 апр 2014, 22:10
Откуда: г.Сыктывкар

Re: Исследование функции

Сообщение Снежана »

а точно же..забыла же ... :) \(\)поставить их

Аватара пользователя
Добрый Волк
Администратор
Сообщения: 1541
Зарегистрирован: 18 янв 2014, 03:13

Re: Исследование функции

Сообщение Добрый Волк »

Точки совершенно верны :yes: Записывают это так: \(x_{\min}=-4\), \(x_{\max}=0\). Но это найдены точки максимума и минимума. Сам максимум и минимум - это значения у, т.е, например,

\(y_{\max}=y(0)=2\)

Ну, и \(y_{\min}\) аналогично. А далее останется лишь интервалы выпуклости и вогнутости найти :)
"Именно то, что наиболее естественно, менее всего подобает человеку." Братья Стругацкие, "Хромая судьба"

Аватара пользователя
Снежана
Сообщения: 154
Зарегистрирован: 01 апр 2014, 22:10
Откуда: г.Сыктывкар

Re: Исследование функции

Сообщение Снежана »

двойная производная)))
\(y''(x)= (\frac{-3x(x+4)}{8})'\)

Аватара пользователя
Добрый Волк
Администратор
Сообщения: 1541
Зарегистрирован: 18 янв 2014, 03:13

Re: Исследование функции

Сообщение Добрый Волк »

Да, производную второго порядка можно находить так. Однако проще учесть, что \(y'=\frac{-12x-3x^{2}}{8}\), а потом уже получим, что:

\(y''=\left(\frac{-12x-3x^{2}}{8}\right)'=...\)

тут поступаем точно так же, как и для производной первого порядка.
"Именно то, что наиболее естественно, менее всего подобает человеку." Братья Стругацкие, "Хромая судьба"

Аватара пользователя
Снежана
Сообщения: 154
Зарегистрирован: 01 апр 2014, 22:10
Откуда: г.Сыктывкар

Re: Исследование функции

Сообщение Снежана »

\(y''(x)= (\frac{(-12x-3x^{2})}{8})'= \frac{(-12x-3x^{2})'\cdot 8- (-12x-3x^{2})\cdot (8)'}{8^{2}}= \frac{(-x-6x)\cdot 8- (-12x-3x^{2})}{8^{2}}= \frac{3x^{2}-44}{8^{2}}\) почему то мне кажется где то я ошиблась(((

Аватара пользователя
Добрый Волк
Администратор
Сообщения: 1541
Зарегистрирован: 18 янв 2014, 03:13

Re: Исследование функции

Сообщение Добрый Волк »

Это чувство верное :) Вы усложняете себе расчет (кстати, \(8'=0\)), и тем самым увеличиваете вероятность ошибки. Попробуйте по аналогии:

\(y'=\left(\frac{16-6x^2-x^3}{8} \right)'=\left(\frac{1}{8}\cdot \left(16-6x^2-x^3\right) \right)'=\frac{1}{8}\cdot \left(16-6x^2-x^3\right)'=\frac{-12x-3x^2}{8}\)


\(y''=\left(\frac{-12x-3x^{2}}{8}\right)'=...\)

"Именно то, что наиболее естественно, менее всего подобает человеку." Братья Стругацкие, "Хромая судьба"

Аватара пользователя
Снежана
Сообщения: 154
Зарегистрирован: 01 апр 2014, 22:10
Откуда: г.Сыктывкар

Re: Исследование функции

Сообщение Снежана »

\(y''=\left(\frac{-12x-3x^{2}}{8}\right)'= \frac{1}{8}\cdot (-12x-3x^{2})'= \frac{-x-6x}{8}\) так? :)

Аватара пользователя
Снежана
Сообщения: 154
Зарегистрирован: 01 апр 2014, 22:10
Откуда: г.Сыктывкар

Re: Исследование функции

Сообщение Снежана »

даже \(y''=\left(\frac{-12x-3x^{2}}{8}\right)'= \frac{1}{8}\cdot (-12x-3x^{2})'= \frac{-x-6x}{8} = \frac{-7x}{8}\) :)

Аватара пользователя
Добрый Волк
Администратор
Сообщения: 1541
Зарегистрирован: 18 янв 2014, 03:13

Re: Исследование функции

Сообщение Добрый Волк »

Погодите... А как в числителе возник \(-x\)?
"Именно то, что наиболее естественно, менее всего подобает человеку." Братья Стругацкие, "Хромая судьба"

Ответить

Вернуться в «Функции одной переменной»