деление многочленов

Темы из курса высшей математики, которые не вошли в предыдущие разделы.
New-Man
Сообщения: 17
Зарегистрирован: 07 ноя 2017, 16:39

деление многочленов

Сообщение New-Man » 01 дек 2017, 22:00

Помогите найти целую часть и остаток( я конечно понимаю детская задача)
\(\frac{y^{2}+2y+1}{b^{2}y+1}\)

Аватара пользователя
Добрый Волк
Администратор
Сообщения: 1483
Зарегистрирован: 18 янв 2014, 03:13

Re: деление многочленов

Сообщение Добрый Волк » 02 дек 2017, 01:05

Случай \(b=0\) тривиален и особых пояснений не требует :) Пусть \(b\neq{0}\). А далее наиболее простым путём мне представляется применение схемы Горнера для деления многочлена \(y^2+2y+1\) на бином \(y+\frac{1}{b^2}\).
"Именно то, что наиболее естественно, менее всего подобает человеку." Братья Стругацкие, "Хромая судьба"

New-Man
Сообщения: 17
Зарегистрирован: 07 ноя 2017, 16:39

Re: Деление многочленов

Сообщение New-Man » 04 дек 2017, 23:35

у меня получилось, так, но я сомневаюсь
Скриншот 05-12-2017 145359.png
Скриншот 05-12-2017 145359.png (149.18 КБ) 687 просмотров
Последний раз редактировалось New-Man 05 дек 2017, 13:55, всего редактировалось 2 раза.

New-Man
Сообщения: 17
Зарегистрирован: 07 ноя 2017, 16:39

Re: деление многочленов

Сообщение New-Man » 05 дек 2017, 14:10

а нет ошибся там в последней клетке будет: \(y^{2}+\frac{2y}{b^{2}}+2y+\frac{2}{b^{2}}+\frac{1}{b^{4}}\)

Аватара пользователя
Добрый Волк
Администратор
Сообщения: 1483
Зарегистрирован: 18 янв 2014, 03:13

Re: деление многочленов

Сообщение Добрый Волк » 05 дек 2017, 14:36

Откуда у вас вообще игреки в клетках? В схеме Горнера такого нет. Почитайте еще раз пример №1 по ссылке выше.
"Именно то, что наиболее естественно, менее всего подобает человеку." Братья Стругацкие, "Хромая судьба"

New-Man
Сообщения: 17
Зарегистрирован: 07 ноя 2017, 16:39

Re: деление многочленов

Сообщение New-Man » 05 дек 2017, 14:47

я же по примеру делал( я вникнул) мой ответ:
\(\frac{y^{2}+2y+1}{b^{2}y+1}=(y+2)+\frac{(-\frac{y}{b^{2}}-\frac{2}{b^{2}}+1)} {b^{2}y+1}\) правильно?

Аватара пользователя
Добрый Волк
Администратор
Сообщения: 1483
Зарегистрирован: 18 янв 2014, 03:13

Re: деление многочленов

Сообщение Добрый Волк » 05 дек 2017, 19:07

New-Man писал(а):
05 дек 2017, 14:47
я же по примеру делал( я вникнул) мой ответ:
По какому примеру вы делали? Я сам писал статью по схеме Горнера, там нет ни одного примера, в котором в таблице были бы написаны \(x\) или \(y\). В таблице пишутся только коэффициенты.

Вот начало решения по схеме Горнера:


\(
\begin{array} {c|c|c|c} & 1 & 2 & 1\\ \hline -\frac{1}{b^2} & 1 & \ldots & \ldots \end{array} \\
\)

"Именно то, что наиболее естественно, менее всего подобает человеку." Братья Стругацкие, "Хромая судьба"

New-Man
Сообщения: 17
Зарегистрирован: 07 ноя 2017, 16:39

Re: деление многочленов

Сообщение New-Man » 05 дек 2017, 20:47

Скриншот 05-12-2017 214614.png
Скриншот 05-12-2017 214614.png (184.21 КБ) 644 просмотра
последняя клетка это остаток, а какая целая часть? (предпоследняя клетка)

Аватара пользователя
Добрый Волк
Администратор
Сообщения: 1483
Зарегистрирован: 18 янв 2014, 03:13

Re: деление многочленов

Сообщение Добрый Волк » 06 дек 2017, 09:17

Ну, результат вы нашли более-менее верно:

\begin{array} {c|c|c|c} & 1 & 2 & 1\\ \hline -\frac{1}{b^2} & 1 & 2-\frac{1}{b^2} & 1-\frac{1}{b^2}+\frac{1}{b^4} \end{array}


Интерпретировать данный результат нужно так:


\(y^2+2y+1=\left(y+\frac{1}{b^2}\right)\cdot\left(y+2-\frac{1}{b^2}\right)+1-\frac{2}{b^2}+\frac{1}{b^4}\)


Далее, не стоит забывать, что нас интересовало деление на \(b^2y+1\). Поэтому в правой части полученной формулы первое слагаемое домножим и разделим на \(b^2\):


\(
y^2+2y+1=b^2\cdot\left(y+\frac{1}{b^2}\right)\cdot\frac{1}{b^2}\cdot\left(y+2-\frac{1}{b^2}\right)+1-\frac{2}{b^2}+\frac{1}{b^4}=\\
=\left(b^2y+1\right)\cdot\left(\frac{1}{b^2}\cdot{y}+\frac{2}{b^2}-\frac{1}{b^4}\right)+1-\frac{2}{b^2}+\frac{1}{b^4}
\)

"Именно то, что наиболее естественно, менее всего подобает человеку." Братья Стругацкие, "Хромая судьба"

New-Man
Сообщения: 17
Зарегистрирован: 07 ноя 2017, 16:39

Re: деление многочленов

Сообщение New-Man » 06 дек 2017, 10:59

спасибо большое

Закрыто