Тригонометрическая форма комплексного числа

Темы из курса высшей математики, которые не вошли в предыдущие разделы.
kicul
Сообщения: 58
Зарегистрирован: 29 дек 2016, 08:57

Тригонометрическая форма комплексного числа

Сообщение kicul » 01 май 2017, 12:01

\( 2-3i,\cos{ \varphi }-\boldsymbol{i}\sin{ \boldsymbol{\varphi} }, 0 \leqslant\boldsymbol{\varphi}\leqslant\frac{ \boldsymbol{\pi} }{ 2} ,

\left| \boldsymbol{z} \right|=\sqrt{ \boldsymbol{a} ^{2} + \boldsymbol{b^{2} } }=\sqrt{2^{2} + (-3)^{2} }= \sqrt{13},

\arg{ \boldsymbol{z} }= \operatorname{arctg}\frac{ \boldsymbol{b} }{ \boldsymbol{a} }=\operatorname{arctg}\frac{ 2 }{ - 3 }\)


Подскажите в чем ошибка? Спасибо

Аватара пользователя
Добрый Волк
Администратор
Сообщения: 1526
Зарегистрирован: 18 янв 2014, 03:13

Re: Тригонометрическая форма комплексного числа

Сообщение Добрый Волк » 01 май 2017, 21:37

Дело в том, что у вас \(a=2\), \(b=-3\). Поэтому \(\arg(2-3i)=\arctg\frac{-3}{2}=-\arctg\frac{3}{2}\).
"Именно то, что наиболее естественно, менее всего подобает человеку." Братья Стругацкие, "Хромая судьба"

kicul
Сообщения: 58
Зарегистрирован: 29 дек 2016, 08:57

Re: Тригонометрическая форма комплексного числа

Сообщение kicul » 02 май 2017, 13:35

\(|z|=\sqrt{13}(cos(-arctg(\frac{3}{2})+2\pi+i sin(-arctg(\frac{3}{2})+2\pi)\)
Теперь запись числа правильная?Как правильно определить в какой четверти находится число \( (-arctg(\frac{3}{2})+2\pi+i sin(-arctg(\frac{3}{2}+2\pi))\)? Спасибо.

Аватара пользователя
Добрый Волк
Администратор
Сообщения: 1526
Зарегистрирован: 18 янв 2014, 03:13

Re: Тригонометрическая форма комплексного числа

Сообщение Добрый Волк » 02 май 2017, 14:46

Для того, чтобы выяснить, в какой четверти находится комплексное число, его вовсе не обязательно записывать в тригонометрической форме :) . Для числа \(z=2-3i\) имеем: \( \Re{z}=2>0 \), \(\Im{z}=-3<0 \). Следовательно, точка, соответствующая данному числу, находится в четвёртой четверти.

Если вести речь про тригонометрическую форму комплексного числа, что обозначение \(\varphi \) в выражении \(|z|\cdot\left(\cos\varphi+i\sin\varphi \right) \) означает не всё множество возможных значений аргумента, а главное значение аргумента, т.е. значение аргумента, принадлежащее промежутку \((-\pi;\pi]\). Формулу для нахождения главного значения аргумента я указал ниже:
Отправка.png
Отправка.png (10.33 КБ) 1535 просмотров
Таким образом, в вашем случае \(\varphi=\arctg\frac{-3}{2}=-\arctg\frac{3}{2}\). И тригонометрическая форма будет такой:

\(2-3i=\sqrt{13}\cdot\left(\cos\left(-\arctg\frac{3}{2}\right)+i\sin\left(-\arctg\frac{3}{2}\right) \right)\)

"Именно то, что наиболее естественно, менее всего подобает человеку." Братья Стругацкие, "Хромая судьба"

Закрыто

Вернуться в «Разное»