Предел

Первый и второй замечательный пределы. Вычисление пределов как с использованием правила Лопиталя, так и без оного. Исследование функций на непрерывность.
deadbox

Предел

Сообщение deadbox »

Всем доброго времени суток! Прошу помочь решить предел \(\lim_{x\rightarrow 1}(1-x)*ctg((x^2-1)/2)\)
(1-x)*ctg((x^2-1)/2).

Аватара пользователя
Добрый Волк
Администратор
Сообщения: 1572
Зарегистрирован: 18 янв 2014, 03:13

Re: Предел

Сообщение Добрый Волк »

У вас требуется решение с использованием правила Лопиталя или без него?
"Именно то, что наиболее естественно, менее всего подобает человеку." Братья Стругацкие, "Хромая судьба"

deadbox

Re: Предел

Сообщение deadbox »

Да, без него! Я понимаю, что ctg надо раскладывать. Но дальше ничего не получается. Всё сводится к неопределённости 0/0

Аватара пользователя
Добрый Волк
Администратор
Сообщения: 1572
Зарегистрирован: 18 янв 2014, 03:13

Re: Предел

Сообщение Добрый Волк »

Я бы советовал сделать замену переменной, чтобы было немного визуально проще с преобразованиями:

\(
\lim_{x\to{1}}\left((1-x)\cdot\ctg\frac{x^2-1}{2}\right)
=\left[
\begin{aligned}
& t=x-1;\\
& t\to{0}.\\
& x^2-1=(x-1)(x+1)=t(t+2)
\end{aligned}
\right]=\\

\lim_{t\to{0}}\left(-t\cdot\ctg\frac{t(t+2)}{2}\right)
=-\lim_{t\to{0}}\frac{t}{\tg\frac{t(t+2)}{2}}
\)

Далее подгоняйте под следствие из первого замечательного предела \(\lim_{z\to{0}}\frac{\tg{z}}{z}=1\). В знаменателе разделите и домножьте на выражение \(\frac{t(t+2)}{2}\). Или же используйте эквивалентности, т.е. \(\tg\frac{t(t+2)}{2}\sim\frac{t(t+2)}{2}\).
"Именно то, что наиболее естественно, менее всего подобает человеку." Братья Стругацкие, "Хромая судьба"

deadbox

Re: Предел

Сообщение deadbox »

То есть, заменяя tgx ~ x мы получим \(-\lim_{t\rightarrow 0}\frac{t}{\frac{t(t+2)}{2}}=-\lim_{t\rightarrow 0}\frac{2t}{t(t+2)}=-\frac{2}{0+2}=-1\)
Ответ: -1.
Всё правильно получается?

Аватара пользователя
Добрый Волк
Администратор
Сообщения: 1572
Зарегистрирован: 18 янв 2014, 03:13

Re: Предел

Сообщение Добрый Волк »

deadbox писал(а):
27 апр 2020, 12:08
То есть, заменяя tgx ~ x мы получим \(-\lim_{t\rightarrow 0}\frac{t}{\frac{t(t+2)}{2}}=-\lim_{t\rightarrow 0}\frac{2t}{t(t+2)}=-\frac{2}{0+2}=-1\)
Ответ: -1.
Всё правильно получается?
Вроде так, но перед последним действием нужно сократить на \(t\), получив \(-\lim_{t\to{0}}\frac{2}{t+2}\).
"Именно то, что наиболее естественно, менее всего подобает человеку." Братья Стругацкие, "Хромая судьба"

deadbox

Re: Предел

Сообщение deadbox »

Да да, именно так. Я просто опустил этот шаг, дабы не писать лишнего))) Большое спасибо!

Ответить

Вернуться в «Пределы. Исследование функций на непрерывность.»